
Homework 3
Due: Tuesday, September 25, 2025 at 12:00pm (Noon)

Written Assignment

Problem 1: Gradient Descent

(13 points)

In this problem, we’ll examine a gradient descent type algorithm which could be used to find the minimum
of a function f : R→ R over a closed interval [−b, b] (given some b > 0). Importantly, we must assume that
f is convex over [−b, b]. You may also assume that f is twice continuously differentiable; in such a setting, f
being convex is equivalent to f ′′(x) ≥ 0. Finally, we will use α to denote the learning rate parameter, which
is some positive number used to scale the optimizer’s steps as desired.

The steps of gradient descent are as follows:

1. Begin at x0 = 0

2. At each step, set xt+1 = xt − αf ′(xt).

3. If xt+1 < −b, set xt+1 = −b. If xt+1 > b, set xt+1 = b. Otherwise, continue.

4. Repeat (2) and (3) until ϵ-convergence.

We say that an optimization algorithm (such as gradient descent) ϵ-converges if, at some point, xt stays
within ϵ of the true minimum. Formally, we have ϵ-convergence at time t if

|xt′ − xmin| ≤ ϵ, where xmin = argmin
x∈[−b,b]

f(x)

for all t′ ≥ t.

a. For α = 0.1, b = 1, and ϵ = 0.001, find a convex function f so that running gradient descent does not
ϵ-converge. Specifically, show that x0 = 0, x1 = b, x2 = −b, x3 = b, x4 = −b, etc.

b. For α = 0.1, b = 1, and ϵ = 0.001, find a convex function f so that gradient descent does ϵ-converge, but
show that it takes at least 10,000 steps.

c. Construct a different optimization algorithm and show that it will always ϵ-converge (for any convex f)
within log2 (2b/ϵ) steps.

d. (Extra credit)
Unfortunately, even if xt is within ϵ of xmin, f(xt) can be arbitrarily greater than f(xmin). However,
consider the case where the derivative of f is always between −r and r (∀x ∈ [−b, b], f ′(x) ∈ [−r, r]).
In this case, we can make a guarantee about the difference between f(xt) and f(xmin).

Given that |xt−xmin| ≤ ϵ and that −r ≤ f ′(x) ≤ r, find a bound on |f(xt)− f(xmin)| in terms of ϵ and r.

1

Problem 2: Logistic Regression

(7 points)

Suppose we collect data on a set of soccer teams in Providence. For each team, we’ve measured the av-
erage amount of possession (on a scale from 0 to 100) per game, x1, and the average number of shots on
target per game, x2. Each team also has a label indicating whether or not it qualified for the Providence
tournament. From this data, we decide to fit a logistic regression and determine that w = (0.05, 1,−6),
where the last component is the bias.

a. What is the probability that a team with an average of 20% possession and 3.8 shots on target per game
qualifies for the tournament?

b. How many average shots on target per game would the team in part (a) need in order to have at least a
50% chance of qualifying?

c. Suppose we want to extend our logistic regression model to predict all tournament outcomes (qualifier,
semifinalist, champion, etc.). Why should we use the softmax function in this case, but not previously?

2

Programming Assignment

Introduction

In this assignment, you will be using a modified version of the UCI Census Income data set to predict the
education levels of individuals based on certain attributes collected from the 1994 census database. You can
read more about the dataset here: https://archive.ics.uci.edu/ml/datasets/Census+Income.

Relevant textbook sections: 9.2 (pg 123), 9.3 (pg 126), 14.3 (pg 191)

Stencil Code & Data

You can find the stencil code and dataset for this assignment on Github classroom at this link. For more
details, please see the download/submission guide.

We have provided the following stencil code:

• main.py is the entry point of program which will read in the datasets, run the models and print the
results.

• models.py contains the LogisticRegression model which you will be implementing.

You should only need to modify code marked by #TODO in models.py to complete the project. If you
edit anything else for other purposes, please make sure all of your additions are commented out in the final
handin.
To run the program, run python main.py in a terminal. Make sure you activate the virtual environment
first when working over ssh or on a department machine:

source /course/cs1420/cs142 env/bin/activate

The Assignment

In models.py, there are a few functions you will implement. They are:

• LogisticRegression:

– train() uses stochastic gradient descent to train the weights of the model.

– loss() calculates the log loss of some dataset divided by the number of examples.

– predict() predicts the labels of data points using the trained weights. For each data point, you
should apply the softmax function to it and return the label with the highest assigned probability.

– accuracy() computes the percentage of the correctly predicted labels over a dataset.

Note: You are not allowed to use any packages that have already implemented these models (e.g. scikit-
learn). We have also included some code in main.py for you to test out the different random seeds and
calculate the average accuracy of your model across those random seeds.

Logistic Regression

Logistic Regression, despite its name, is used in classification problems. It learns sigmoid functions of the
inputs

hw(x)j = ϕsig(⟨wj ,x⟩)

3

https://archive.ics.uci.edu/ml/datasets/Census+Income
https://classroom.github.com/a/PjZCNYMD
https://docs.google.com/document/d/11tgujihd4z61ndKNZYCVg9TcWe7TKRS6kBmmzaiOZas/edit?usp=sharing

where hw(x)j is the probability that sample x is a member of class j.

In multi-class classification, we need to apply the softmax function to normalize the probabilities of each
class. The loss function of a Logistic Regression classifier over k classes on a single example (x, y) is the
log-loss, sometimes called cross-entropy loss:

ℓ(hw, (x, y)) = −
k∑

j=1

{
log(hw(x)j), y = j
0, otherwise

}
Therefore, the ERM hypothesis of w on a dataset of m samples has weights

w = argminw(−
1

m

m∑
i=1

k∑
j=1

{
log(hw(xi)j), yi = j
0, otherwise

}
)

To learn the ERM hypothesis, we need to perform gradient descent. The partial derivative of the loss function
on a single data point (x, y) with respect to an individual weight wst is

∂lS(hw)

∂wst
=

{
hw(x)s − 1, y = s
hw(x)s, otherwise

}
xt

With respect to a single row in the weights matrix, ws, the partial derivative of the loss is

∂lS(hw)

∂ws
=

{
hw(x)s − 1, y = s
hw(x)s, otherwise

}
x

You will need to descend this gradient to update the weights of your Logistic Regression model.

Stochastic Gradient Descent

You will be using Stochastic Gradient Descent (SGD) to train your LogisticRegression model. Below, we
have provided pseudocode for SGD on a sample S.

Hints: Consistent with the notation in the lecture, w are initialized as a k × d matrix, where k is the
number of classes and d is the number of features (with the bias term). With n as the number of examples,
X is a n× d matrix, and y is a vector of length n.

Tuning Parameters

Convergence is achieved when the change in loss between iterations is some small value. Usually, this value
will be very close to but not equal to zero, so it is up to you to tune this threshold value to best optimize
your model’s performance. Typically, this number will be some magnitude of 10−x, where you experiment
with x. Note that when calculating the loss for checking convergence, you should be calculating the loss for
the entire dataset, not for a single batch (i.e., at the end of every epoch).

You will also be tuning batch size (and one of the report questions addresses the impact of batch size
on model performance). In order to reach the accuracy threshold, you will need to tune both parameters. α
would typically be tuned during the training process, but we are fixing α = 0.03 for this assignment. Please
do not change α in your code.

You can tune the batch size and convergence threshold in main.py.

4

Algorithm 1 Stochastic Gradient Descent

Require: b > 0 ▷ Batch size
Require: α > 0 ▷ Learning rate
Require: nfeatures ▷ Number of features
Require: nclasses ▷ Number of classes
Require: w initialized ▷ Weights matrix
Require: CONV THRESHOLD > 0 ▷ Convergence threshold
1: procedure (X,Y)
2: converged ← False
3: epoch ← 0
4: n← len(X)
5: L0 ← +∞
6: while converged is False do
7: epoch ← epoch+1
8: Shuffle (X,Y) indices ▷ You may find np.random.shuffle useful
9: for i = 0 to ⌈n/b⌉ − 1 do

10: X ′ ← X[ib : (i+ 1)b]
11: Y ′ ← Y [ib : (i+ 1)b]

▷ Grabs the current batch of examples and labels together
12: n′ ← len(X ′)
13: ∇Lw ← 0nclasses×(nfeatures+1)

14: for (x, y) ∈ (X ′, Y ′) do ▷ You may find zip useful
15: for j = 0 to nclasses − 1 do
16: if y = j then
17: ∇Lwj

← ∇Lwj
+ (softmax(w · x)j − 1) · x

18: else
19: ∇Lwj ← ∇Lwj + (softmax(w · x)j) · x
20: end if
21: end for
22: end for
23: w = w − α

n′∇Lw

24: end for
25: if |L(X,Y)− L0| <CONV THRESHOLD then
26: converged ← True
27: else
28: L0 ← L(X,Y)
29: end if

▷ If the change in loss L(·)− L0 has reached the threshold, we end the loop. Otherwise, we need to
store the current value to compare in the next epoch

30: end while
31: end procedure

5

Project Report

This section outlines some guiding questions that you should answer in your report. Please leave any code
that you use in your final handin but make sure that it is not run by default when your program is run (i.e.,
comment it out). You may use any program to create the PDF file, but we highly recommend using LaTeX.
We have provided an example report available on our course website to get you started.

Report Questions

1. Make sure that you have implemented a variable batch size using the constructor given for LogisticRegression.
Try different batch sizes (e.g. 1, 5, 10, 75, etc.) and report the accuracy and number of epochs taken
to converge.

a. What tradeoffs exist between good accuracy and quick convergence?

b. Why do you think the batch size led to the results you received?

2. Take a look at the Colab notebook in this folder we provided to clean and process the data. Which
categories did we one-hot encode and why? How does a one-hot representation compare to an enumer-
ations of the possible values for that feature?

Using Google Colab: If the notebook looks like a long text file, then click the button at the top center
that says “Open with Google Colaboratory.” If this is your first time using Google Colab, you may
need to click the dropdown on the top center, click Connect more apps, and connect Google Colab
first. Afterwards, click the button again to open the notebook in Google Colab. To run the notebook,
you may either need to open in playground mode or make a copy.

3. Try to run the model with unnormalized data.csv instead of normalized data.csv by changing
DATA FILE NAME at the top of main.py. Report your findings when running the model on the unnor-
malized data. In a few short sentences, explain what normalizing the data does and why it affected
your model’s performance.

4. Try running the model with normalized data nosens.csv. In this data file, we have removed sensitive
information such as the race and sex attributes. Report your findings on the accuracy of your model
on this dataset (averaging over many random seeds here may be useful). Can we make any conclusion
based on these accuracy results about whether there is a correlation between sex/race and education
level? Why or why not?

Grading Breakdown

We expect your LogisticRegression model to reach a test accuracy of 80% or above and run in under
one minute. Since we are setting a random seed in the stencil code, you should not have to worry about
randomness affecting your model performance.

As always, you will primarily be graded on the correctness of your code and not based on whether it does or
does not achieve the accuracy targets.

The grading breakdown for the assignment is as follows:

Written Assignment 20%
Logistic Regression 50%
Report 30%
Total 100%

6

https://drive.google.com/drive/folders/1IdKBSAlYXgIx58D61G8rLzB_4Jl_xhcy?usp=sharing

Handing in

You will hand in both the written assignment and the coding portion on gradescope, separately.

1. Your written assignment should be uploaded to gradescope under “Homework 3”.

2. Submit your hw3 github repo containing all your source code and your project report named report.pdf
on gradescope under “Homework 3 Code”. report.pdf should live in the root directory of your code
folder; the autograder will check for the existence of this file and inform you if it is not found. For
questions, please consult the download/submission guide.

If you have questions on how to set up or use Gradescope, ask on Edstem! For this assignment, you
should have written answers for Problems 1, 2, and 3.

Anonymous Grading

You need to be graded anonymously, so do not write your name anywhere on your handin.

Obligatory Note on Academic Integrity

Plagiarism—don’t do it.

As outlined in the Brown Academic Code, attempting to pass off another’s work as your own can result
in failing the assignment, failing this course, or even dismissal or expulsion from Brown. More than that,
you will be missing out on the goal of your education, which is the cultivation of your own mind, thoughts,
and abilities. Please review this course’s collaboration policy and, if you have any questions, please contact
a member of the course staff.

7

https://docs.google.com/document/d/11tgujihd4z61ndKNZYCVg9TcWe7TKRS6kBmmzaiOZas/edit?usp=sharing
https://college.brown.edu/design-your-education/academic-policies/academic-code

