
Homework 4
Due: Thursday, October 2, 2025 at 12:00pm (Noon)

Written Assignment

Problem 1: Bias-Complexity Tradeoff

(10 points)

a. Explain why the No Free Lunch Theorem requires us to introduce bias into our machine learning models.

b. While training a machine learning model, Lorenzo notices that the model’s error remains large even after
many training iterations. Lorenzo determines that this error results from overfitting, and he proposes
changing the complexity of the hypothesis class to reduce the error. Will changing the complexity of the
hypothesis class successfully reduce the error? If so, how should the complexity be changed? If not, why
not? Explain your reasoning.

c. After tinkering with his model, Lorenzo eventually manages to prevent his model from overfitting. How-
ever, Lorenzo notices that his model’s error remains large because his model is now underfitting the data.
To decrease underfitting, Lorenzo decides to collect more training data. Will collecting more training data
successfully reduce the error? Explain your reasoning. Hint: Consider if collecting more training data
affects approximation and/or estimation error, and if so, explain how.

d. Tuning hyperparameters to strike a balance between underfitting and overfitting is a critical part of the
machine learning process. Going too far in either direction can often lead to unintended consequences.
What are some ways that overfitting or underfitting could produce unfairness in a learned model?
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Problem 2: Assumptions & Guarantees

(10 points)

a. In lecture, we made several assumptions before proving that an ERM solution is PAC learnable. What
are these assumptions?

b. The HTAs want to produce a model to predict the final grade of a student based off of their Homework
6 score. During the sampling process, the HTAs select the next example based on how similar it was to
the previous example. Why does the ERM solution not perform well at test time? Explain in terms of
the assumptions above.

c. Lorenzo wants to produce a model to predict how many goals will be scored in a soccer match based
on certain characteristics (total number of shots, passes, and fouls). He trains his model on a dataset of
basketball games and then uses it to make predictions about soccer games. Why does the ERM solution
not perform well at test time?
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Problem 3: PAC Learning of Partial Orderings

(20 points)

Background Information

A partial ordering (denoted ⪯) is a binary relation over a set X that satisfies the following properties:

• Reflexivity : ∀s ∈ X, s ⪯ s

• Antisymmetry : ∀s, t ∈ X, if s ⪯ t, t ⪯ s, then s = t

• Transitivity : ∀r, s, t ∈ X, if r ⪯ s, s ⪯ t, then r ⪯ t

A total ordering is a partial ordering with the additional guarantee that any two elements of the set A are
comparable, that is, for any two a, b ∈ A, either a ⪯ b or b ⪯ a is true. In the case that ⪯ is a partial or-
dering and neither a ⪯ b nor b ⪯ a are true, we say that a and b are incomparable under the partial ordering ⪯.

Example: The “≤” relation is a total ordering on the real numbers. Any two numbers a, b may be com-
pared such that either a ≤ b or b ≤ a. Additionally, the “≤” relation satisfies the conditions of reflexivity,
antisymmetry and transitivity stated above.

Example: The “⊆” relation is a partial ordering but not total ordering. “⊆” satisfies reflexivity, tran-
sitivity and antisymmetry. However, given two sets A and B, there is no guarantee that either A ⊆ B or
B ⊆ A.

Problem

Now consider the following:

• Let X be a set of n unique elements: {1, 2, 3, ..., n}.

• Input Space: The set S of all possible permutations of length n, composed the elements of X.
For example, if X is a set of length n = 5, a permutation could look like (3, 4, 2, 5, 1), and S would be
the set of all different possible 5-element permutations.

• Hypothesis Space (H): The set of all hypotheses, where each hypothesis maps all n-element permu-
tations to either 0 or 1. Each hypothesis represents a partial ordering. So, according to the hypothesis,
a n-element permutation would be mapped to 1 if it abides by the partial ordering and to 0 otherwise.
For example, if a hypothesis h is 1 ⪯ 3, and we have the permutation (3, 1), the permutation does not
abide by the hypothesis since 3 is before 1, reading left to right. Therefore, h would map (3, 1) to 0.

Suppose that there is a hidden partial ordering that we do not have access to. We have a sample of permu-
tations, and a label for each sample indicating whether the permutation is consistent with the true hidden
partial ordering. Assume that the sample has both positively and negatively labelled permutations. We are
trying to learn the rule from this sample.

Example: Let ⪯ be a partial ordering on the set X = {1, 2, 3}, defined such that 1 ⪯ 2 and 3 is in-
comparable to both 1, 2. Let h be the hypothesis associated with ⪯; that is, h is the hypothesis which maps
all permutations of X abiding by ⪯ to 1 and all permutations not abiding by ⪯ to 0.

Then, the permutations
(1, 2, 3), (1, 3, 2), (3, 1, 2)

abide by ⪯ (notice that 1 precedes 2 in all three and it does not matter where 3 is) and are labelled 1 by h.
However,

(2, 1, 3), (2, 3, 1), (3, 2, 1)
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do not abide by ⪯ since 2 precedes 1 in all three of these. Hence, they are labelled 0 by h.

a. Show that |H| is between n! and 3(n
2). That is, show that the number of possible valid partial orders

generated from n elements is bounded by n! and 3(n
2).

Hint: For the upper bound, it may be helpful to consider that h ∈ H may be represented as a Directed
Acyclic Graph (DAG). The nodes of the DAG can be thought of as the elements that make up the n-element
permutations of the input space. Think about how the relations between nodes in a DAG are similar to
the relations between elements within a partial ordering. This question may also therefore be approached
by thinking about the number of valid DAGs with n nodes.

b. Show that the amount of data needed is polynomial in n (provide the asymptotic bound using the Big-O
notation), in order to ensure the ERM solution is PAC. Hint: Consider the bounds for |H| we proved in
part (a).

c. Describe an algorithm you could use to efficiently find an ERM solution (the true partial ordering, or DAG)
for a given sample of observations. Be sure to explain the steps of your algorithm, prove the correctness
of the algorithm and analyze its runtime. Note, we do not have a strict runtime requirement, but the
algorithm should be in polynomial time. The algorithm itself can be written in pseudocode or in words.
Hint: The true hypothesis is within our hypothesis space. Consider the direction of the ordering between
any two elements in every permutation with label 1.

4



Grading Breakdown

The grading breakdown for the assignment is as follows:

Problem 1 25%
Problem 2 25%
Problem 3 50%
Total 100%

Handing in

Your written assignment should be uploaded to Gradescope under “Homework 4”. If you have questions on
how to set up or use Gradescope, ask on Edstem! For this assignment, you should have written answers for
Problems 1, 2, and 3.

Anonymous Grading

You need to be graded anonymously, so do not write your name anywhere on your handin.

Obligatory Note on Academic Integrity

Plagiarism — don’t do it.
As outlined in the Brown Academic Code, attempting to pass off another’s work as your own can result

in failing the assignment, failing this course, or even dismissal or expulsion from Brown. More than that,
you will be missing out on the goal of your education, which is the cultivation of your own mind, thoughts,
and abilities. Please review this course’s collaboration policy and if you have any questions, please contact a
member of the course staff.
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